Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A uniform rope of length ' $L$ ' and mass ' $\mathrm{m}_1$ ' hangs vertically from a rigid support. A block of mass ' $\mathrm{m}_2$ ' is attached to the free end of the rope. A transverse wave of wavelength ' $\lambda_1$ ' is produced at the lower end of the rope. The wavelength of the wave when it reaches the top of the rope is ' $\lambda_2$ '. The ratio $\frac{\lambda_1}{\lambda_2}$ is
PhysicsWaves and SoundMHT CETMHT CET 2023 (10 May Shift 2)
Options:
  • A $\left[\frac{\mathrm{m}_2}{\mathrm{~m}_1+\mathrm{m}_2}\right]^{\frac{1}{2}}$
  • B $\left[\frac{\mathrm{m}_1+\mathrm{m}_2}{\mathrm{~m}_2}\right]^{\frac{1}{2}}$
  • C $\left[\frac{\mathrm{m}_1}{\mathrm{~m}_1+\mathrm{m}_2}\right]^{\frac{1}{2}}$
  • D $\left[\frac{m_2}{m_1-m_2}\right]^{\frac{1}{2}}$
Solution:
2734 Upvotes Verified Answer
The correct answer is: $\left[\frac{\mathrm{m}_2}{\mathrm{~m}_1+\mathrm{m}_2}\right]^{\frac{1}{2}}$
Let velocity of pulse at lower end be $v_1$ and at top be $\mathrm{v}_2$
$\therefore \quad \frac{\lambda_2}{\lambda_1}=\frac{\mathrm{v}_2}{\mathrm{v}_1} \quad\left(\because \lambda=\frac{\mathrm{v}}{\mathrm{n}} \text { and } \mathrm{n}=\text { constant }\right)$
Velocity of transverse wave on a string is
$\mathrm{v}=\sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$
where, $m$ is linear density.
In this case, $\mathrm{v} \propto \sqrt{\mathrm{T}}$
$\therefore \quad \frac{\lambda_2}{\lambda_1}=\frac{\mathrm{v}_2}{\mathrm{v}_1}=\sqrt{\frac{\mathrm{T}_2}{\mathrm{~T}_1}}=\sqrt{\frac{\left(\mathrm{m}_2+\mathrm{m}_1\right)}{\mathrm{m}_2}}$
Where, $T_2$ is tension at upper end of rope and $T_1$ is tension at lower end of rope.
$\Rightarrow \frac{\lambda_1}{\lambda_2}=\sqrt{\frac{m_2}{m_2+m_1}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.