Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A unit negative charge with mass $M$ resides at the mid-point of the straight line of length $2 a$ adjoining two fixed charges of magnitude $+Q$ each. If it is given a very small displacement $x(x< < a)$ in a direction perpendicular to the straight line, it will
PhysicsOscillationsWBJEEWBJEE 2017
Options:
  • A come back to its original position and stay there
  • B execute oscillations with frequency
    $$
    \frac{1}{2 \pi} \sqrt{\frac{Q}{4 \pi \varepsilon_{0} M a^{3}}}
    $$
  • C None of the above
  • D execute oscillations with frequency
    $$
    \frac{1}{2 \pi} \sqrt{\frac{Q}{4 \pi \varepsilon_{0} M a^{2}}}
    $$
Solution:
2583 Upvotes Verified Answer
The correct answer is: None of the above


From figure the net force
$\begin{aligned} F_{\text {bet }} &=-F \cos \theta+(-F \cos \theta) \\ &=-2 F \cos \theta \\ &=-2 \times \frac{k Q \times 1}{\left(x^{2}+a^{2}\right)} \times \frac{x}{\sqrt{x^{2}+a^{2}}} \\ &=-\frac{2 k Q}{\left(x^{2}+a^{2}\right)^{3 / 2}} \cdot x \\ F_{\text {net }} &=-\left(\frac{2 k Q}{a^{3}}\right) \cdot x \end{aligned}$
Frequency of oscillation $=\frac{1}{2 \pi} \sqrt{\frac{2 k Q}{M a^{3}}}$
$=\frac{1}{2 \pi} \sqrt{\frac{2 \times \frac{1}{4 \pi \varepsilon_{0}} \cdot Q}{M a^{3}}}$
$=\frac{1}{2 \pi} \sqrt{\frac{Q}{2 \pi e_{0} M a^{3}}}$
$\Rightarrow\left(^{*}\right.$ None of the option matches)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.