Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$A$ value of $\theta$, for which $\frac{2+3 i \sin \theta}{1-2 \sin \theta}, \mathrm{i}=\sqrt{-1}$ is purely imaginary, is
MathematicsComplex NumberMHT CETMHT CET 2022 (11 Aug Shift 1)
Options:
  • A $\frac{\pi}{6}$
  • B $\frac{\pi}{3}$
  • C $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
  • D $\sin ^{-1}(\sqrt{3})$
Solution:
1727 Upvotes Verified Answer
The correct answer is: $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
$\mathrm{z}=\frac{2+3 i \sin \theta}{1-2 i \sin \theta} \times \frac{1+2 i \sin \theta}{1+2 i \sin \theta}=\frac{\left(2-6 \sin ^2 \theta\right)+\mathrm{i}(7 \sin \theta)}{1+4 \sin ^2 \theta}$
for $z$ to be purely imaginary $\operatorname{Re}(z)=0$
$\Rightarrow 6 \sin ^2 \theta=2$
$\Rightarrow \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.