Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A vector $\vec{b}$ is collinear with the vector $\vec{a}=(2,1,-1)$ and
satisfies the condition $\vec{a} \cdot \vec{b}=3 .$ What is $\vec{b}$ equal to?
MathematicsVector AlgebraNDANDA 2010 (Phase 1)
Options:
  • A $(1,1 / 2,-1 / 2)$
  • B $\quad(2 / 3,1 / 3,-1 / 3)$
  • C $(1 / 2,1 / 4,-1 / 4)$
  • D $(1,1,0)$
Solution:
2904 Upvotes Verified Answer
The correct answer is: $(1,1 / 2,-1 / 2)$
Let $\vec{b}=x \vec{i}+y \vec{j}+z \vec{k}$
Since, $\vec{b}$ is collinear with vetor $\vec{a}$
therefore $\vec{a}=k \vec{b}$ where $k$ is a scalar.
Given $\vec{a}=(2,1,-1)$
$\therefore \quad(2,1,-1)=k(x, y, z)$
$\Rightarrow x=\frac{2}{k}, y=\frac{1}{k}, z=\frac{-1}{k}$
Also, $\vec{a} \cdot \vec{b}=3$
$\Rightarrow 2 x+y-z=3$
$\Rightarrow \quad 2\left(\frac{2}{k}\right)+\frac{1}{k}+\frac{1}{k}=3$
$\Rightarrow \frac{4}{k}+\frac{1}{k}+\frac{1}{k}=3$
$\Rightarrow \frac{6}{k}=3 \Rightarrow k=2$
$\therefore \quad x=1, y=\frac{1}{2}$ and $z=\frac{-1}{2}$
Hence $\vec{b}=\left(1, \frac{1}{2}, \frac{-1}{2}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.