Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A vector of magnitude \( 3 \), bisecting the angle between the vectors \( \vec{a}=2 \hat{\mathrm{i}}+\widehat{\mathrm{j}}-\widehat{\mathrm{k}} \) and \( \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\widehat{\mathrm{k}} \) and making an obtuse angle with \( \vec{b} \) is -
MathematicsVector AlgebraJEE Main
Options:
  • A \( \frac{3 i-j}{\sqrt{6}} \)
  • B \( \frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{\sqrt{14}} \)
  • C \( \frac{3(\hat{i}+3 \hat{j}-2 \hat{k})}{\sqrt{14}} \)
  • D \( \frac{3 \hat{\mathbf{i}}-\hat{\mathbf{j}}}{\sqrt{10}} \)
Solution:
1077 Upvotes Verified Answer
The correct answer is: \( \frac{3(\hat{i}+3 \hat{j}-2 \hat{k})}{\sqrt{14}} \)

We have a= 2i^ + j ^- k^

             b= i^ -2 j ^+ k^

Internal and External angle bisecting Vectors  between a and b is given by  aa + bb and  aa - bb respectively.

Internal angle bisector= aa + bb=psay

p=a + b6

p=3i^ - j ^6

External Angle bisector=

=aa - bb=qsay

q=a - b6

q=i^ +3 j ^-2 k^6

Since p.b>0 and q.b<0

hence required vector will along q.

Let required vector be

r=kq

Since  r=3

k=3614

Hence required vector

r=3i^ +3 j ^-2 k^14

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.