Search any question & find its solution
Question:
Answered & Verified by Expert
A vessel of one litre capacity containing 1 mole of $\mathrm{SO}_3$ is heated till a state of equilibrium is attained.
$2 \mathrm{SO}_{3(g)} \rightleftharpoons 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)}$.
At equilibrium, 0.6 moles of $\mathrm{SO}_2$ had formed. The value of equilibrium constant is
Options:
$2 \mathrm{SO}_{3(g)} \rightleftharpoons 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)}$.
At equilibrium, 0.6 moles of $\mathrm{SO}_2$ had formed. The value of equilibrium constant is
Solution:
1334 Upvotes
Verified Answer
The correct answer is:
$0.68$
$\quad 2 \mathrm{SO}_{3(g)} \rightleftharpoons 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)}$
Initial conc. 1.0 mole $\quad 0.0$ mole 0.0 mole
Equilibrium 0.4 mole $\quad 0.6$ mole $\quad 0.3$ mole
$\Rightarrow$ Equilibrium constant is given by :
$K=\frac{\left[\mathrm{SO}_2\right]^2\left[\mathrm{O}_2\right]}{\left[\mathrm{SO}_3\right]^2}=\frac{(0.6)^2(0.3)}{(0.4)^2}=0.675 \approx 0.68$
Initial conc. 1.0 mole $\quad 0.0$ mole 0.0 mole
Equilibrium 0.4 mole $\quad 0.6$ mole $\quad 0.3$ mole
$\Rightarrow$ Equilibrium constant is given by :
$K=\frac{\left[\mathrm{SO}_2\right]^2\left[\mathrm{O}_2\right]}{\left[\mathrm{SO}_3\right]^2}=\frac{(0.6)^2(0.3)}{(0.4)^2}=0.675 \approx 0.68$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.