Search any question & find its solution
Question:
Answered & Verified by Expert
A wire in the form of a square of side $a$ carries a current $i$. Then, the magnetic induction at the centre of the square is
(Magnetic permeability of free space $=\mu_0$ )
Options:
(Magnetic permeability of free space $=\mu_0$ )
Solution:
1163 Upvotes
Verified Answer
The correct answer is:
$\frac{2 \sqrt{2} \mu_d}{\pi a}$
Magnetic field produced by side ' $A B^{\prime}$ at the centre.

$\begin{aligned} B_1 & =\frac{\mu_0 j^j}{4 \pi r}\left(\sin \phi_1+\sin \phi_2\right) \\ & =\frac{\mu_{\omega^j}}{4 \pi \frac{a}{2}}\left(\sin 45^{\circ}+\sin 45^{\circ}\right) \\ & =\frac{2 \mu_0 i}{4 \pi a}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \Rightarrow=\frac{2 \sqrt{2} \mu_0 i}{4 \pi a}\end{aligned}$
$\therefore$ Total magnetic field at the centre
$\begin{aligned} B & =4 B_1 \\ & =4\left(\frac{2 \sqrt{2} \mu_0 i}{4 \pi a}\right) \\ & =\frac{2 \sqrt{2} \mu_0 i}{\pi a}\end{aligned}$

$\begin{aligned} B_1 & =\frac{\mu_0 j^j}{4 \pi r}\left(\sin \phi_1+\sin \phi_2\right) \\ & =\frac{\mu_{\omega^j}}{4 \pi \frac{a}{2}}\left(\sin 45^{\circ}+\sin 45^{\circ}\right) \\ & =\frac{2 \mu_0 i}{4 \pi a}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \Rightarrow=\frac{2 \sqrt{2} \mu_0 i}{4 \pi a}\end{aligned}$
$\therefore$ Total magnetic field at the centre
$\begin{aligned} B & =4 B_1 \\ & =4\left(\frac{2 \sqrt{2} \mu_0 i}{4 \pi a}\right) \\ & =\frac{2 \sqrt{2} \mu_0 i}{\pi a}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.