Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
ABCD is a parallelogram and P is the point of intersection of the diagonals. If $\mathrm{O}$ is the origin, then $\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}$ is equal to
MathematicsVector AlgebraNDANDA 2015 (Phase 2)
Options:
  • A $\quad 4 \overrightarrow{\mathrm{OP}}$
  • B $2 \overrightarrow{\mathrm{OP}}$
  • C $\overrightarrow{\mathrm{OP}}$
  • D Null vector
Solution:
1933 Upvotes Verified Answer
The correct answer is: $\quad 4 \overrightarrow{\mathrm{OP}}$


$\because \overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{AP}} ; \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PB}}$
$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PC}} \& \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{DP}}$
Also, $\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{PC}} \& \overrightarrow{\mathrm{DP}}=\overrightarrow{\mathrm{PB}}$
$\therefore \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}=4 \overrightarrow{\mathrm{OP}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.