Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\mathrm{ABCD}$ is a quadrilateral whose diagonals are $\mathrm{AC}$ and $\mathrm{BD}$. Which one of the following is correct?
MathematicsVector AlgebraNDANDA 2017 (Phase 1)
Options:
  • A $\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{DB}}$
  • B $\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{BD}}+\overline{\mathrm{CA}}$
  • C $\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}$
  • D $\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{AD}}$
Solution:
2100 Upvotes Verified Answer
The correct answer is: $\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{BD}}+\overline{\mathrm{CA}}$


$\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{BD}}$...(i)
$\overrightarrow{\mathrm{CD}}+\overrightarrow{\mathrm{DA}}=\overrightarrow{\mathrm{CA}}$...(ii)
$(\mathrm{i})+(\mathrm{ii}) \Rightarrow \overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{CA}}(\because \overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{DA}}$ cancel $)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.