Search any question & find its solution
Question:
Answered & Verified by Expert
$\mathrm{Ag}^{+}+\mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+} ; k_1=3.5 \times 10^{-3}$ $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}+\mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+} ; k_2=1.7 \times 10^{-3}$ then the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}$is
Options:
Solution:
2741 Upvotes
Verified Answer
The correct answer is:
$6.08 \times 10^{-6}$
$6.08 \times 10^{-6}$
(i) $\mathrm{Ag}^{+}+\mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+} ; k_1=3.5 \times 10^{-3}$
(ii) $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}+\mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}, k_2=1.7 \times 10^{-3}$
on the basis of above reaction
$$
\begin{aligned}
& k_1=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_3\right]} \\
& k_2=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}}{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}\left[\mathrm{NH}_3\right]}
\end{aligned}
$$
For the formation of $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}$
$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}
$$
Formation constant $(K)=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_3\right]^2}$
From eq. (i) and (ii)
$$
K=k_1 \times k_2=3.5 \times 10^{-3} \times 1.7 \times 10^{-3}=5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}
$$
(ii) $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}+\mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}, k_2=1.7 \times 10^{-3}$
on the basis of above reaction
$$
\begin{aligned}
& k_1=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_3\right]} \\
& k_2=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}}{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)\right]^{+}\left[\mathrm{NH}_3\right]}
\end{aligned}
$$
For the formation of $\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}$
$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_3 \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}
$$
Formation constant $(K)=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_3\right)_2\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_3\right]^2}$
From eq. (i) and (ii)
$$
K=k_1 \times k_2=3.5 \times 10^{-3} \times 1.7 \times 10^{-3}=5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.