Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An AC source of angular frequency $\omega$ is fed across a resistor $R$ and a capacitor $C$ in series. The current flowing in the circuit found to be $I$. Now the frequency of the source is changed to $\frac{\omega}{3}$, (maintaining the same voltage) the current in the circuit is found to be halved. What is the ratio of reactance to resistance at the original frequency?
PhysicsAlternating CurrentAP EAMCETAP EAMCET 2021 (25 Aug Shift 2)
Options:
  • A $\sqrt{\frac{5}{7}}$
  • B $\sqrt{\frac{3}{4}}$
  • C $\sqrt{\frac{3}{5}}$
  • D $\sqrt{\frac{7}{5}}$
Solution:
2374 Upvotes Verified Answer
The correct answer is: $\sqrt{\frac{3}{5}}$
At angular frequency $\omega$, current through resistance R and capacitance C is given by
$I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+X_C^2}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\left(\frac{1}{\omega C}\right)^2}}$...(i)
When angular frequency is changed to $\frac{\omega}{3}$, then the current becomes
$$
\frac{I_{\mathrm{rms}}}{2}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\left(\frac{1}{\frac{\omega}{3} C}\right)^2}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\left(\frac{3}{\omega C}\right)^2}}...(ii)
$$
Dividing Eq. (i) by Eq. (ii), we get
$\begin{array}{rlrl} & & 2=\frac{\sqrt{R^2+\left(\frac{3}{\omega C}\right)^2}}{\sqrt{R^2+\left(\frac{1}{\omega C}\right)^2}} \\ & \Rightarrow & 4\left[R^2+\left(\frac{1}{\omega C}\right)^2\right] & =R^2+\left(\frac{3}{\omega C}\right)^2 \\ & \Rightarrow & 3 R^2 & =\frac{5}{\omega^2 C^2} \\ & \Rightarrow & \frac{1}{\omega_C} & =\sqrt{\frac{3}{5}} \\ \Rightarrow & \frac{X_C}{R} & =\sqrt{\frac{3}{5}}\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.