Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An aeroplane flying with uniform speed horizontally one $\mathrm{km}$ above the ground is observed at an elevation of $60^{\circ}$. After $10 \mathrm{~s}$ if the elevation is observed to be $30^{\circ}$, then the speed of the plane (in $\mathrm{km} / \mathrm{h}$ ) is
MathematicsHeights and DistancesTS EAMCETTS EAMCET 2004
Options:
  • A $\frac{240}{\sqrt{3}}$
  • B $200 \sqrt{3}$
  • C $240 \sqrt{3}$
  • D $\frac{120}{\sqrt{3}}$
Solution:
2506 Upvotes Verified Answer
The correct answer is: $240 \sqrt{3}$

$\begin{array}{llll}
\tan 60^{\circ} & =\frac{D P}{A P} \\
\Rightarrow \sqrt{3} & =\frac{1}{A P} \\
\Rightarrow A P & =\frac{1}{\sqrt{3}} & {[\because E Q=D P=1]}
\end{array}$
In $\Delta E A Q$,
$\begin{aligned}
\tan 30^{\circ} & =\frac{E Q}{A P+P Q} \\
\Rightarrow \frac{1}{\sqrt{3}} & =\frac{1}{\frac{1}{\sqrt{3}}+P Q} \Rightarrow \frac{1}{\sqrt{3}}+P Q=\sqrt{3} \\
\Rightarrow P Q & =\sqrt{3}-\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}} \mathrm{~km} \\
\therefore \text { Speed of plane } & =\frac{\text { Distance }}{\text { Time }}=\frac{2 / \sqrt{3}}{\frac{10}{60 \times 60}}=\frac{2}{\sqrt{3}} \times \frac{3600}{10} \\
& =240 \sqrt{3} \mathrm{~km} / \mathrm{h}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.