Search any question & find its solution
Question:
Answered & Verified by Expert
An alpha particle of energy $\mathrm{K} \mathrm{MeV}$ is moving towards a nucleus of atomic number $\mathrm{Z}$. The distance of closest approach of the alpha particle to the nucleus in metres is
Options:
Solution:
1002 Upvotes
Verified Answer
The correct answer is:
$28.8 \times 10^{-16} \frac{\mathrm{Z}}{\mathrm{K}}$
At the distance of closest approach the whole kinetic energy get converted into potential energy.
$\begin{aligned}
& \mathrm{K} . \mathrm{E}=\frac{2 \mathrm{Ze}^2}{4 \pi \epsilon_0 \mathrm{r}} \\
& \Rightarrow \mathrm{r}=\frac{2 \mathrm{ze}^2}{4 \pi \epsilon_0 \mathrm{k}(\mathrm{mev})}=9 \times 10^9 \times \frac{2 \mathrm{eZ}}{\mathrm{k} \times 10^6} \\
& \mathrm{r}=28.8 \times 10^{-16} \frac{\mathrm{Z}}{\mathrm{k}}
\end{aligned}$
$\begin{aligned}
& \mathrm{K} . \mathrm{E}=\frac{2 \mathrm{Ze}^2}{4 \pi \epsilon_0 \mathrm{r}} \\
& \Rightarrow \mathrm{r}=\frac{2 \mathrm{ze}^2}{4 \pi \epsilon_0 \mathrm{k}(\mathrm{mev})}=9 \times 10^9 \times \frac{2 \mathrm{eZ}}{\mathrm{k} \times 10^6} \\
& \mathrm{r}=28.8 \times 10^{-16} \frac{\mathrm{Z}}{\mathrm{k}}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.