Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An alternating current is given by the equation $i=i_1 \cos \omega t+i_2 \sin \omega t$. The r.m.s. current is given by
PhysicsAlternating CurrentJEE Main
Options:
  • A $\frac{1}{\sqrt{2}}\left(i_1+i_2\right)$
  • B $\frac{1}{\sqrt{2}}\left(i_i+i_2\right)^2$
  • C $\frac{1}{\sqrt{2}}\left(i_1^2+i_2^2\right)^{1 / 2}$
  • D $\frac{1}{2}\left(i_1^2+i_2^2\right)^{1 / 2}$
Solution:
2959 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{2}}\left(i_1^2+i_2^2\right)^{1 / 2}$
$i_{r m s}=\sqrt{\frac{i_1^2+i_2^2}{2}}=\frac{1}{\sqrt{2}}\left(i_1^2+i_2^2\right)^{1 / 2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.