Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An alternating e.m.f. is given as $e=e_0 \sin \omega t$. In what time, the e.m.f. will have half its maximum value if $e$ starts from zero?
$\left(T=\right.$ time period, $\left.\sin 30^{\circ}=\cos 60^{\circ}=0.5\right)$
PhysicsAlternating CurrentMHT CETMHT CET 2022 (10 Aug Shift 1)
Options:
  • A $\frac{T}{12}$
  • B $\frac{T}{8}$
  • C $\frac{T}{16}$
  • D $\frac{T}{4}$
Solution:
2060 Upvotes Verified Answer
The correct answer is: $\frac{T}{12}$
Let $t^{\prime}$ be the time when emf is half the maximum value
$\begin{aligned} & \therefore \frac{e_0}{2}=e_0 \sin \left(\omega t^{\prime}\right) \\ & \Rightarrow \frac{1}{2}=\sin \left(\omega t^{\prime}\right) \\ & \Rightarrow \omega t^{\prime}=\left(\frac{\pi}{6}\right) \\ & \Rightarrow\left(\frac{2 \pi}{T}\right) t^{\prime}=\frac{\pi}{6} \\ & \Rightarrow t^{\prime}=\frac{T}{12}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.