Search any question & find its solution
Question:
Answered & Verified by Expert
An ammeter of resistance $20 \Omega$ gives full scale deflection when $1 \mathrm{~mA}$ current flows through it. What is the maximum current that can be measured by connecting 4 resistors each of $16 \Omega$ in parallel with the meter?
Options:
Solution:
1385 Upvotes
Verified Answer
The correct answer is:
6 mA
$\frac{1}{S}=\frac{4}{16}=\frac{1}{4}$
$S=4 \Omega$
$G=20 \Omega$
$i_{g}=1 \mathrm{~mA}=10^{-3} \mathrm{~A}$
$\left(i-i_{g}\right) 4=i_{g} G=10^{-3} \times 20=2 \times 10^{-2}$
$i-i_{g}=\frac{1}{2} \times 10^{-2}$
$i=0.5 \times 10^{-2}+10^{-3}=6 \times 10^{-3}=6 \mathrm{~mA}$
$S=4 \Omega$
$G=20 \Omega$
$i_{g}=1 \mathrm{~mA}=10^{-3} \mathrm{~A}$
$\left(i-i_{g}\right) 4=i_{g} G=10^{-3} \times 20=2 \times 10^{-2}$
$i-i_{g}=\frac{1}{2} \times 10^{-2}$
$i=0.5 \times 10^{-2}+10^{-3}=6 \times 10^{-3}=6 \mathrm{~mA}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.