Search any question & find its solution
Question:
Answered & Verified by Expert
An aqueous solution of a non-volatile solute boils at $100.17^{\circ} \mathrm{C}$. The temperature at which this solution will freeze $\left(\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$ is
$\begin{aligned} & \left(\mathrm{K}_{\mathrm{b}}\left(\mathrm{H}_2 \mathrm{O}\right)=0.512^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1},\right. \\ & \left.\qquad \mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_2 \mathrm{O}\right)=1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}\right)\end{aligned}$
Options:
$\begin{aligned} & \left(\mathrm{K}_{\mathrm{b}}\left(\mathrm{H}_2 \mathrm{O}\right)=0.512^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1},\right. \\ & \left.\qquad \mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_2 \mathrm{O}\right)=1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}\right)\end{aligned}$
Solution:
1400 Upvotes
Verified Answer
The correct answer is:
$-0.62$
Using formula,
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}}$ molality
$(100.17-100)^{\circ} \mathrm{C}=0.512^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1} \times$ molality molality $=\frac{0.17}{0.512} \mathrm{~m}$
Now, depression in freezing point is given by, $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}}$ molality
$\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{kg} \times \frac{0.17}{0.512} \mathrm{~m}=0.62^{\circ} \mathrm{C}$
Thus, the freezing point of the solution $=0^{\circ} \mathrm{C}-0.62^{\circ} \mathrm{C}=-0.62^{\circ} \mathrm{C}$.
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}}$ molality
$(100.17-100)^{\circ} \mathrm{C}=0.512^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1} \times$ molality molality $=\frac{0.17}{0.512} \mathrm{~m}$
Now, depression in freezing point is given by, $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}}$ molality
$\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{kg} \times \frac{0.17}{0.512} \mathrm{~m}=0.62^{\circ} \mathrm{C}$
Thus, the freezing point of the solution $=0^{\circ} \mathrm{C}-0.62^{\circ} \mathrm{C}=-0.62^{\circ} \mathrm{C}$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.