Search any question & find its solution
Question:
Answered & Verified by Expert
An astronaut takes a ball of mass $m$ from earth to space. He throws the ball into a circular orbit about earth at an altitude of $318.5 \mathrm{~km}$. From earth's surface to the orbit, the change in total mechanical energy of the ball is $x \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$. The value of $x$ is (take $\left.\mathrm{R}_{\mathrm{e}}=6370 \mathrm{~km}\right)$ :
Options:
Solution:
1457 Upvotes
Verified Answer
The correct answer is:
11
$\begin{aligned} & \mathrm{h}=318.5 \approx\left(\frac{\mathrm{R}_{\mathrm{e}}}{20}\right) \\ & \mathrm{T} \cdot \mathrm{E}_{\mathrm{i}}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}_{\mathrm{e}}} \\ & \mathrm{T} \cdot \mathrm{E}_{\mathrm{f}}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2\left(\mathrm{R}_{\mathrm{e}}+\mathrm{h}\right)}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2\left(\mathrm{R}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{e}}}{20}\right)} \\ & \Rightarrow \mathrm{T} \cdot \mathrm{E}_{\mathrm{f}}=\frac{-10 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}\end{aligned}$
Change in total mechanical energy
$\begin{aligned} & =\mathrm{TE}_{\mathrm{f}}-\mathrm{TE}_{\mathrm{i}} \\ & =\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\operatorname{Re}}\left[1-\frac{10}{21}\right]=\frac{11 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \operatorname{Re}}\end{aligned}$
Change in total mechanical energy
$\begin{aligned} & =\mathrm{TE}_{\mathrm{f}}-\mathrm{TE}_{\mathrm{i}} \\ & =\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\operatorname{Re}}\left[1-\frac{10}{21}\right]=\frac{11 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \operatorname{Re}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.