Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An element crystallises in fcc type of unit cell. The volume of one unit cell is $24.99 \times 10^{-24} \mathrm{~cm}^{3}$ and density of the element $7 \cdot 2 \mathrm{~g} \mathrm{~cm}^{-3} .$ Calculate the number of unit cells in $36 \mathrm{~g}$ of pure sample of element?
ChemistrySolid StateMHT CETMHT CET 2020 (19 Oct Shift 2)
Options:
  • A $2 \cdot 0 \times 10^{23}$
  • B $2 \cdot 0 \times 10^{21}$
  • C $2 \cdot 0 \times 10^{24}$
  • D $1 \cdot 25 \times 10^{21}$
Solution:
1071 Upvotes Verified Answer
The correct answer is: $2 \cdot 0 \times 10^{23}$
(C)
Vol. of element $=\frac{\text { Mass }}{\text { Density }}=\frac{36 \mathrm{~g}}{7.2 \mathrm{~g} \mathrm{~cm}^{-3}}=5 \mathrm{~cm}^{3}$
No. of unit cells in $36 \mathrm{~g}$ of pure sample of element $=\frac{\text { Total Vol. of element }}{\text { Vol. of one unit cell }}$
$=\frac{5 \mathrm{~cm}^{3}}{24.99 \times 10^{-24} \mathrm{~cm}^{3}}=2.0 \times 10^{23}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.