Search any question & find its solution
Question:
Answered & Verified by Expert
An element with molar mass \(2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}\) forms a cubic unit cell with edge length \(405 \mathrm{pm}\). If its density is \(2.7 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\), what is the nature of the cubic unit cell?
Solution:
2295 Upvotes
Verified Answer
\(d=\frac{Z \times M}{a^3 N_A}\)
Given: \(\quad\) Density, \(d=2.7 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\)
\(a=405 \mathrm{pm}\)
\(\begin{aligned}
&=405 \times 10^{-12} \mathrm{~m} \\
M &=2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}
\end{aligned}\)
\(\Rightarrow Z=\frac{d a^3 N_A}{M}\)
\(\begin{aligned}
&=\frac{\left(2.7 \times 10^3\right)\left(405 \times 10^{-12}\right)^3\left(6.022 \times 10^{23}\right)}{2.7 \times 10^{-2}} \\
&=4.004 \simeq 4
\end{aligned}\)
Therefore, it is a \(f c c\) unit cell.
Given: \(\quad\) Density, \(d=2.7 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\)
\(a=405 \mathrm{pm}\)
\(\begin{aligned}
&=405 \times 10^{-12} \mathrm{~m} \\
M &=2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}
\end{aligned}\)
\(\Rightarrow Z=\frac{d a^3 N_A}{M}\)
\(\begin{aligned}
&=\frac{\left(2.7 \times 10^3\right)\left(405 \times 10^{-12}\right)^3\left(6.022 \times 10^{23}\right)}{2.7 \times 10^{-2}} \\
&=4.004 \simeq 4
\end{aligned}\)
Therefore, it is a \(f c c\) unit cell.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.