Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An ellipse has $\mathrm{OB}$ as semi minor axis, $\mathrm{F}$ and $\mathrm{F}^{\prime}$ its focii and the angle FBF' is a right angle. Then the eccentricity of the ellipse is
MathematicsEllipseBITSATBITSAT 2021
Options:
  • A $\frac{1}{\sqrt{2}}$
  • B $\frac{1}{2}$
  • C $\frac{1}{4}$
  • D $\frac{1}{\sqrt{3}}$
Solution:
1199 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{2}}$
$\because \angle \mathrm{FBF}^{\prime}=90^{\circ}$

$\Rightarrow \mathrm{FB}^{2}+\mathrm{F}^{\prime} \mathrm{B}^{2}=\mathrm{FF}^{\prime 2}$

$\therefore\left(\sqrt{a^{2} e^{2}+b^{2}}\right)^{2}+\left(\sqrt{a^{2} e^{2}+b^{2}}\right)^{2}=(2 a e)^{2}$

$\Rightarrow 2\left(a^{2} e^{2}+b^{2}\right)=4 a^{2} e^{2}$

$\Rightarrow e^{2}=\frac{b^{2}}{a^{2}}$




Also $e^{2}=1-\frac{b^{2}}{a^{2}}=1-e^{2}$

$\begin{array}{l}

\Rightarrow 2 e^{2}=1 \\

\Rightarrow e=\frac{1}{\sqrt{2}}

\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.