Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An experiment has 10 equally likely outcomes. Let $A$ and $B$ be two non-empty events of the experiment. If $A$ consists of 4 outcomes, the number of outcomes that $B$ must have so that $A$ and $B$ are independent, is
MathematicsProbabilityJEE AdvancedJEE Advanced 2008 (Paper 2)
Options:
  • A
    2,4 or 8
  • B
    3,6 or 9
  • C
    4 or 8
  • D
    5 or 10
Solution:
1335 Upvotes Verified Answer
The correct answer is:
5 or 10
$P(A)=\frac{2}{5}$
For independent events,
$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \Rightarrow P(A \cap B) \leq \frac{2}{5} \\
& \Rightarrow P(A \cap B)=\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10} \\
& \text { (i) } P(A \cap B)=\frac{1}{10} \\
& \Rightarrow P(A) \cdot P(B)=\frac{1}{10} \\
& \Rightarrow \quad P(B)=\frac{1}{10} \times \frac{5}{2}=\frac{1}{4}, \text { not possible. } \\
& \text { (ii) } P(A \cap B)=\frac{2}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{2}{10} \\
& \Rightarrow \quad P(B)=\frac{5}{10}, \text { outcomes of } B=5
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& P(A \cap B)=\frac{3}{10} \Rightarrow P(A) \cdot P(B)=\frac{3}{10} \\
& \Rightarrow \quad \frac{2}{5} \times P(B)=\frac{3}{10} \\
& P(B)=\frac{3}{4}, \text { not possible }
\end{aligned}
$$

$$
\text { (iv) } \begin{aligned}
& P(A \cap B)=\frac{4}{10} \\
\Rightarrow & P(A) \cdot P(B)=\frac{4}{10} \\
\Rightarrow & P(B)=1, \text { outcomes of } B=10 .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.