Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An ice cube of edge $1 \mathrm{~cm}$ melts in a gravity free container. The approximate surface area of water formed is (water is in the form of spherical drop)
PhysicsMechanical Properties of FluidsMHT CETMHT CET 2021 (24 Sep Shift 1)
Options:
  • A $(36 \pi)^{1 / 3} \mathrm{~cm}^2$
  • B $(24 \pi)^{1 / 3} \mathrm{~cm}^2$
  • C $(28 \pi)^{1 / 3} \mathrm{~cm}^2$
  • D $(12 \pi)^{1 / 3} \mathrm{~cm}^2$
Solution:
2037 Upvotes Verified Answer
The correct answer is: $(36 \pi)^{1 / 3} \mathrm{~cm}^2$
$$
\mathrm{x}=1 \mathrm{~cm}
$$
$\therefore$ Volume of the cube $\mathrm{v}=\mathrm{x}^3=1 \mathrm{~cm}^3$, volume of drop $=$ volume of cube.
$$
\begin{aligned}
& \frac{4}{3} \pi r^3=x^3=1 \mathrm{~cm}^3 \\
& \therefore r^3=\frac{3}{4 \pi} \text { or } r=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} \\
& \therefore r^2=\left(\frac{9}{16 \pi^2}\right)^{\frac{1}{3}}
\end{aligned}
$$
Surface area of drop $=4 \pi r^2=4 \pi\left(\frac{9}{16 \pi^2}\right)^{\frac{1}{3}}$
$$
=\left(64 \pi^3 \times \frac{9}{16 \pi^2}\right)^{\frac{1}{3}}=(36 \pi)^{\frac{1}{3}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.