Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An ideal Carnot engine whose efficiency is $50 \%$ receives heat at $500 \mathrm{~K}$. If the efficiency is to be $60 \%$, then intake temperature for the same exhaust temperature is
PhysicsThermodynamicsTS EAMCETTS EAMCET 2021 (06 Aug Shift 1)
Options:
  • A $600 \mathrm{~K}$
  • B $625 \mathrm{~K}$
  • C $650 \mathrm{~K}$
  • D $700 \mathrm{~K}$
Solution:
2649 Upvotes Verified Answer
The correct answer is: $625 \mathrm{~K}$
The efficiency of Carnot engine,
$$
\begin{aligned}
& \eta=1-\frac{T_2}{T_1}, \text { where } T_1=\text { initial intake }=500 \mathrm{~K}, \\
& T_2=\text { exhaust temperature, }
\end{aligned}
$$
Initial efficiency, $\eta_1=50 \%=\frac{50}{100}$
Final efficiency, $\eta_2=60 \%=\frac{60}{100}$ and let $T_1{ }^{\prime}=$ final intake temperatue.
Now, $\eta_1=1-\frac{T_2}{T_1}$
$$
\frac{50}{100}=1-\frac{T_2}{500} \Rightarrow T_2=250 \mathrm{~K}
$$
and
$$
\begin{aligned}
& \eta_2=\frac{60}{100}=\frac{6}{10} \Rightarrow \frac{6}{10}=1-\frac{T_2}{T_1{ }^{\prime}} \\
& \frac{T_2}{T_1{ }^{\prime}}=1-\frac{6}{10}=\frac{4}{10} \Rightarrow T_1{ }^{\prime}=\frac{10}{4} T_2 \\
& T_1{ }^{\prime}=\frac{10}{4} \times 250=625 \mathrm{~K}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.