Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An ideal gas at pressure $\mathrm{P}_0$ undergoes an isothermal expansion until its volume is 8.0 times its initial volume. The gas is slowly and adiabatically compressed back to its original volume. If the adiabatic constant of the gas is $\gamma=4 / 3$, then the ratio of the average kinetic energy per molecule in this final state to that in the initial state is
PhysicsThermodynamicsTS EAMCETTS EAMCET 2022 (19 Jul Shift 2)
Options:
  • A 1.44
  • B 1.68
  • C 2.0
  • D 1.2
Solution:
2699 Upvotes Verified Answer
The correct answer is: 2.0


For BC
$$
\begin{aligned}
& \mathrm{T}_0\left(8 \mathrm{~V}_0\right)^{\gamma-1}=\mathrm{T}^{\prime \prime}\left(\mathrm{V}_0\right)^{\gamma-1} \\
& \Rightarrow \quad \mathrm{T}_0\left(8 \mathrm{~V}_0\right)^{1 / 3}=\mathrm{T}^{\prime \prime} \mathrm{V}_0^{1 / 3} \\
& \Rightarrow \quad \mathrm{T}_0(8)^{1 / 3}=\mathrm{T}^{\prime \prime} \\
& \Rightarrow \quad \mathrm{T}^{\prime \prime}=2 \mathrm{~T}_0
\end{aligned}
$$
Now, $\mathrm{U}_{\mathrm{av}} \propto \mathrm{T}$
$$
\frac{\left(\mathrm{U}_{\mathrm{av}}\right)_{\mathrm{f}}}{\left(\mathrm{U}_{\mathrm{av}}\right)_{\mathrm{i}}}=\frac{\mathrm{T}^{\prime \prime}}{\mathrm{T}_0}=\frac{2 \mathrm{~T}_0}{\mathrm{~T}_0}=2
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.