Search any question & find its solution
Question:
Answered & Verified by Expert
An inductive circuit contains a resistance of $10 \Omega$ and an inductance of $2 \mathrm{H}$. If an $\mathrm{AC}$ voltage of $120 \mathrm{~V}$ and frequency $60 \mathrm{~Hz}$ is applied to this circuit, the current would be nearly
Options:
Solution:
2904 Upvotes
Verified Answer
The correct answer is:
$0.16 \mathrm{~A}$
Here, $R=10 \Omega, L=2 \mathrm{H}$,
$V=120 \mathrm{~V}, \mathrm{v}=60 \mathrm{~Hz}$
$X_L=\omega L=2 \pi v L=2 \times \frac{22}{7} \times 60 \times 2=754.3 \Omega$
$Z=\sqrt{R^2+X_L^2}=\sqrt{10^2+(754.3)^2}=754.35 \Omega$
$I_V=\frac{V}{Z}=\frac{120}{754.3} \mathrm{~A}=0.16 \mathrm{~A}$
$V=120 \mathrm{~V}, \mathrm{v}=60 \mathrm{~Hz}$
$X_L=\omega L=2 \pi v L=2 \times \frac{22}{7} \times 60 \times 2=754.3 \Omega$
$Z=\sqrt{R^2+X_L^2}=\sqrt{10^2+(754.3)^2}=754.35 \Omega$
$I_V=\frac{V}{Z}=\frac{120}{754.3} \mathrm{~A}=0.16 \mathrm{~A}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.