Search any question & find its solution
Question:
Answered & Verified by Expert
An instantaneous displacement of a simple harmonic oscillator is $\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}+\pi / 4) .$ Its speed will be maximum at time
Options:
Solution:
2205 Upvotes
Verified Answer
The correct answer is:
$\pi / 4 \omega$
Velocity, $\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{A} \omega \sin (\omega \mathrm{t}+\pi / 4)$
Velocity will be maximum, when $\omega t+\pi / 4=\pi / 2$ or $\omega t=\pi / 2-\pi / 4=\pi / 4$
or $t=\pi / 4 \omega$
Velocity will be maximum, when $\omega t+\pi / 4=\pi / 2$ or $\omega t=\pi / 2-\pi / 4=\pi / 4$
or $t=\pi / 4 \omega$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.