Search any question & find its solution
Question:
Answered & Verified by Expert
An object kept in a large room having air temperature of $25^{\circ} \mathrm{C}$ takes 12 minutes to cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
The time taken to cool for the same object from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ would be nearly
Options:
The time taken to cool for the same object from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ would be nearly
Solution:
2106 Upvotes
Verified Answer
The correct answer is:
$15 \mathrm{~min}$
Key Idea From Newton's law of cooling, the time taken $(t)$ by a body to cool from $T_1$ to $T_2$ when placed in a medium of temperature $T_0$ can be calculated from relation
$$
\frac{T_1-T_2}{t}=\frac{1}{K}\left(\frac{T_1+T_2}{2}-T_0\right)
$$
When the object cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 12 minutes, then from Newton's law of cooling,
$$
\begin{array}{r}
\frac{80-70}{12}=\frac{1}{\mathrm{~K}}\left(\frac{80+70}{2}-25\right) \quad\left[\because \mathrm{T}_0=25^{\circ} \mathrm{C}\right] \\
\frac{5}{6}=\frac{1}{\mathrm{~K}} 50
\end{array}
$$
Similarly, when object cool from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ we get
$$
\begin{gathered}
\frac{70-60}{\mathrm{t}}=\frac{1}{\mathrm{~K}}\left(\frac{70+60}{2}-25\right) \\
\frac{10}{\mathrm{t}}=\frac{1}{\mathrm{~K}} 40
\end{gathered}
$$
Divide Eq. (i) and (ii), we get
$$
\begin{gathered}
\frac{5}{6} \times \frac{\mathrm{t}}{10}=\frac{50}{40} \\
\Rightarrow \quad \mathrm{t}=\frac{5}{4} \times 12=15 \text { minutes }
\end{gathered}
$$
$$
\frac{T_1-T_2}{t}=\frac{1}{K}\left(\frac{T_1+T_2}{2}-T_0\right)
$$
When the object cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 12 minutes, then from Newton's law of cooling,
$$
\begin{array}{r}
\frac{80-70}{12}=\frac{1}{\mathrm{~K}}\left(\frac{80+70}{2}-25\right) \quad\left[\because \mathrm{T}_0=25^{\circ} \mathrm{C}\right] \\
\frac{5}{6}=\frac{1}{\mathrm{~K}} 50
\end{array}
$$
Similarly, when object cool from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ we get
$$
\begin{gathered}
\frac{70-60}{\mathrm{t}}=\frac{1}{\mathrm{~K}}\left(\frac{70+60}{2}-25\right) \\
\frac{10}{\mathrm{t}}=\frac{1}{\mathrm{~K}} 40
\end{gathered}
$$
Divide Eq. (i) and (ii), we get
$$
\begin{gathered}
\frac{5}{6} \times \frac{\mathrm{t}}{10}=\frac{50}{40} \\
\Rightarrow \quad \mathrm{t}=\frac{5}{4} \times 12=15 \text { minutes }
\end{gathered}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.