Search any question & find its solution
Question:
Answered & Verified by Expert
An orthogonal matrix is
Options:
Solution:
1939 Upvotes
Verified Answer
The correct answer is:
$\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
A square matrix is to be orthogonal matrix if
$A^{\prime} A=I=A A^{\prime}$
$\Rightarrow A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right], A^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A A^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A^{\prime} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\therefore A A^{\prime}=A^{\prime} A=I$.
$A^{\prime} A=I=A A^{\prime}$
$\Rightarrow A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right], A^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A A^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A^{\prime} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\therefore A A^{\prime}=A^{\prime} A=I$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.