Search any question & find its solution
Question:
Answered & Verified by Expert
Angular width of central maximum in the Fraunhoffer diffraction pattern of a slit is measured. The slit is illuminated by light of wavelength $6000 Å$. When the slit is illuminated by light of another wavelength, then the angular width decreases by $30 \%$. The same decrease in angular width of central maximum is obtained when the original apparatus is immersed in a liquid. The refractive index of the liquid will be
Options:
Solution:
1492 Upvotes
Verified Answer
The correct answer is:
1.42
Given, $\lambda_1=6000 Å$,
$\lambda_2=?$
Angular width of central maximum $=\frac{2 \lambda}{a}$
$\theta_1=\frac{2 \lambda_1}{a}$....(i)
and
$\theta_2=\frac{2 \lambda_2}{a}$
$\because \quad \theta_2=\theta_1 \times 0.7$
$\therefore \quad \theta_1 \times 0.7=\frac{2 \lambda_2}{a}$.....(ii)
From Eqs. (i) and (ii), we get
$\begin{aligned} \frac{1}{0.7} & =\frac{\lambda_1}{\lambda_2} \\ \Rightarrow \quad \lambda_2 & =\lambda_1 \times 0.7=6000 \times 0.7 \\ & =4200 Å\end{aligned}$
when immersed in liquid,
$\begin{aligned} \lambda_2 & =\frac{\lambda_1}{\mu} \\ \because \quad \theta_2 & =\theta_1 \times 0.7\end{aligned}$
$\Rightarrow \quad \frac{2 \lambda_2}{a}=\frac{2 \lambda_1}{a} \times 0.7 \quad\left[\because \lambda_2=\frac{\lambda_1}{\mu}\right]$
$\begin{aligned} \Rightarrow & \frac{2 \lambda_1 / \mu}{a} & =\frac{2 \lambda_1}{a} \times 0.7 \\ \Rightarrow & \frac{1}{\mu} & =0.7 \Rightarrow \mu=1.42\end{aligned}$
$\lambda_2=?$
Angular width of central maximum $=\frac{2 \lambda}{a}$
$\theta_1=\frac{2 \lambda_1}{a}$....(i)
and
$\theta_2=\frac{2 \lambda_2}{a}$
$\because \quad \theta_2=\theta_1 \times 0.7$
$\therefore \quad \theta_1 \times 0.7=\frac{2 \lambda_2}{a}$.....(ii)
From Eqs. (i) and (ii), we get
$\begin{aligned} \frac{1}{0.7} & =\frac{\lambda_1}{\lambda_2} \\ \Rightarrow \quad \lambda_2 & =\lambda_1 \times 0.7=6000 \times 0.7 \\ & =4200 Å\end{aligned}$
when immersed in liquid,
$\begin{aligned} \lambda_2 & =\frac{\lambda_1}{\mu} \\ \because \quad \theta_2 & =\theta_1 \times 0.7\end{aligned}$
$\Rightarrow \quad \frac{2 \lambda_2}{a}=\frac{2 \lambda_1}{a} \times 0.7 \quad\left[\because \lambda_2=\frac{\lambda_1}{\mu}\right]$
$\begin{aligned} \Rightarrow & \frac{2 \lambda_1 / \mu}{a} & =\frac{2 \lambda_1}{a} \times 0.7 \\ \Rightarrow & \frac{1}{\mu} & =0.7 \Rightarrow \mu=1.42\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.