Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\operatorname{Arg}\left(\sin \frac{6 \pi}{5}+i\left(1+\cos \frac{6 \pi}{5}\right)\right)=$
MathematicsComplex NumberJEE Main
Options:
  • A $\frac{5 \pi}{6}$
  • B $\frac{6 \pi}{5}$
  • C $\frac{2 \pi}{5}$
  • D $\frac{9 \pi}{10}$
Solution:
2681 Upvotes Verified Answer
The correct answer is: $\frac{9 \pi}{10}$
$\begin{aligned} & \operatorname{Arg}\left(\sin \frac{6 \pi}{5}+i\left(1+\cos \frac{6 \pi}{5}\right)\right) \\ = & \operatorname{Arg}\left(2 \sin \frac{3 \pi}{5} \cdot \cos \frac{3 \pi}{5}+i \cdot 2 \cos ^2 \frac{3 \pi}{5}\right) \\ = & \operatorname{Arg}\left[\left(2 \cos \frac{3 \pi}{5}\right)\left(\sin \frac{3 \pi}{5}+i \cos \frac{3 \pi}{5}\right)\right] \\ = & \operatorname{Arg}\left[\left(2 \cos \frac{3 \pi}{5}\right)\left(\sin \left(\frac{\pi}{2}+\frac{\pi}{10}\right)+i \cos \left(\frac{\pi}{2}+\frac{\pi}{10}\right)\right)\right] \\ = & \operatorname{Arg}\left[\left(2 \cos \frac{3 \pi}{5}\right)\left(\cos \frac{\pi}{10}-i \sin \frac{\pi}{10}\right)\right] \\ \therefore & \quad \operatorname{Arg}\left(Z_1 \cdot Z_2\right)=\arg Z_1+\arg Z_2\end{aligned}$
$=0-\frac{\pi}{10}=\frac{-\pi}{10}$ or $\pi-\frac{\pi}{10}=\frac{9 \pi}{10}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.