Search any question & find its solution
Question:
Answered & Verified by Expert
Assertion (A) $\frac{d}{d x}\left(\frac{x^2 \sin x}{\log x}\right)=\frac{x^2 \sin x}{\log x}$ $\left(\cot x+\frac{2}{x}-\frac{1}{x \log x}\right)$
$\operatorname{Reason}(\mathbf{R}) \frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u v}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$
Options:
$\operatorname{Reason}(\mathbf{R}) \frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u v}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$
Solution:
2288 Upvotes
Verified Answer
The correct answer is:
$A$ is true, $R$ is true and $R$ is correct explanation of A
Assertion : $\frac{d}{d x}\left(\frac{x^2 \sin x}{\log x}\right)$
$\begin{aligned} & =\frac{(\log x)\left[x^2 \cos x+2 x \sin x\right]-x \sin x}{(\log x)^2} \\ & =\frac{x^2 \cos x \log x+2 x \sin x \log x-x \sin x}{(\log x)^2}\end{aligned}$
$=\frac{x^2 \sin x}{\log x}\left[\cot x+\frac{2}{x}-\frac{1}{x \log x}\right]$
Reason : $\frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u w}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$
$\begin{aligned} & =\frac{(\log x)\left[x^2 \cos x+2 x \sin x\right]-x \sin x}{(\log x)^2} \\ & =\frac{x^2 \cos x \log x+2 x \sin x \log x-x \sin x}{(\log x)^2}\end{aligned}$
$=\frac{x^2 \sin x}{\log x}\left[\cot x+\frac{2}{x}-\frac{1}{x \log x}\right]$
Reason : $\frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u w}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.