Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Assuming the atom is in the ground state, the expression for the magnetic field at a point nucleus in hydrogen atom due to circular motion of electron is $\left[\mu_0=\right.$ permeability of free space, $m$ $=$ mass of electron, $\in_0=$ permittivity of free space, $\mathrm{h}=$ Planck's constant]
PhysicsMagnetic Effects of CurrentMHT CETMHT CET 2021 (22 Sep Shift 1)
Options:
  • A $\frac{\mu_0 \mathrm{e}^7 \pi \mathrm{m}^2}{8 \epsilon_0^3 \mathrm{~h}^5}$
  • B $\frac{\mu_0 \mathrm{e}^5 \pi^2 \mathrm{~m}^2}{8 \epsilon_0^2 \mathrm{~h}^4}$
  • C $\frac{\mu_0 \mathrm{e}^5 \pi \mathrm{m}^3}{8 \epsilon_0^3 \mathrm{~h}^5}$
  • D $\frac{\mu_0 \mathrm{e}^7 \pi^2 \mathrm{~m}^2}{8 \epsilon_0^3 \mathrm{~h}^5}$
Solution:
2838 Upvotes Verified Answer
The correct answer is: $\frac{\mu_0 \mathrm{e}^7 \pi \mathrm{m}^2}{8 \epsilon_0^3 \mathrm{~h}^5}$
The magnetic field at the center of a circular coil is given by
$$
\mathrm{B}=\frac{\mu_0 \mathrm{I}}{2 \mathrm{r}}
$$
If $\mathrm{T}$ is the periodic time of revolving electron, then $\mathrm{I}=\frac{\mathrm{e}}{\mathrm{T}}$
Also, $\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{V}}$
$$
\therefore \mathrm{I}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}}
$$
$$
\therefore \mathrm{B}=\frac{\mu_0 \mathrm{eV}}{4 \pi \mathrm{r}^2}
$$
For electron in ground state,
$$
\mathrm{V}=\frac{\mathrm{e}^2}{2 \in_0 \mathrm{~h}} \text { and } \mathrm{r}=\frac{\mathrm{h}^2 \in_0}{\pi \mathrm{m}^2}
$$
Putting these values in eq.(1) and simplifying we get
$$
\therefore \mathrm{B}=\frac{\mu_0 \mathrm{e}^7 \pi \mathrm{m}^2}{8 \epsilon_0^3 \mathrm{~h}^5}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.