Search any question & find its solution
Question:
Answered & Verified by Expert
At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^2$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^2$ equiv $^{-1}$ at the same conditions is
Options:
Solution:
1488 Upvotes
Verified Answer
The correct answer is:
360
Given, $\wedge_{\mathrm{C}_6 \mathrm{H}_5 \mathrm{COONa}}^{\infty}=240 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{HCl}}^{\infty}=349 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{NaCl}}^{\infty}=229 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{C}_6 \mathrm{H}_5 \mathrm{COOH}}^{\infty}=\wedge_{\mathrm{C}_6 \mathrm{H}_5 \mathrm{COONa}}^{\infty}+\wedge_{\mathrm{HCl}}^{\infty}-\wedge_{\mathrm{NaCl}}^{\infty}$
$=240+349-229$
$=360 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{HCl}}^{\infty}=349 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{NaCl}}^{\infty}=229 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
$\wedge_{\mathrm{C}_6 \mathrm{H}_5 \mathrm{COOH}}^{\infty}=\wedge_{\mathrm{C}_6 \mathrm{H}_5 \mathrm{COONa}}^{\infty}+\wedge_{\mathrm{HCl}}^{\infty}-\wedge_{\mathrm{NaCl}}^{\infty}$
$=240+349-229$
$=360 \Omega^{-1} \mathrm{~cm}^2$ equiv $^{-1}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.