Search any question & find its solution
Question:
Answered & Verified by Expert
At room temperature a diatomic gas is found to have an r.m.s. speed of $1930 \mathrm{~ms}^{-1}$. The gas is:
Options:
Solution:
1324 Upvotes
Verified Answer
The correct answer is:
$\mathrm{H}_2$
$\mathrm{H}_2$
$$
\begin{aligned}
&\because \quad \mathrm{C}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \\
&\left(1930^2\right)=\frac{3 \times 8.314 \times 300}{\mathrm{M}} \\
&\mathrm{M}=\frac{3 \times 8.314 \times 300}{1930 \times 1930} \approx 2 \times 10^{-3} \mathrm{~kg}
\end{aligned}
$$
The gas is $\mathrm{H}_2$.
\begin{aligned}
&\because \quad \mathrm{C}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \\
&\left(1930^2\right)=\frac{3 \times 8.314 \times 300}{\mathrm{M}} \\
&\mathrm{M}=\frac{3 \times 8.314 \times 300}{1930 \times 1930} \approx 2 \times 10^{-3} \mathrm{~kg}
\end{aligned}
$$
The gas is $\mathrm{H}_2$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.