Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\text { If } A=\left[\begin{array}{ccc}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
a^2 & a b & a c \\
a b & b^2 & b c \\
a c & b c & c^2
\end{array}\right] \text {, }
$$
then $A B$ is equal to
MathematicsMatricesJEE Main
Options:
  • A
    B
  • B
    A
  • C
    O
  • D
    I
Solution:
1863 Upvotes Verified Answer
The correct answer is:
O

$\begin{aligned} &\quad A B=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]\left[\begin{array}{ccc}a^2 & a b & a c \\ a b & b^2 & b c \\ a c & b c & c^2\end{array}\right] \\ & A B=\left[\begin{array}{ccc}a b c-a b c & b^2 c-b^2 c & b c^2-b c^2 \\ -a^2 c+a^2 c & -a b c+a b c & -a c+a c \\ a^2 b-a^2 b & a b^2-a b^2 & a b c-a b c\end{array}\right] \\ & =\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\mathrm{O} \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.