Search any question & find its solution
Question:
Answered & Verified by Expert
\begin{array}{|c|c|c|c|c|c|}
\hline Class Interval & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\
\hline Frequency & 5 & 10 & 20 & 5 & 10 \\
\hline
\end{array}
What is the median of the above frequency $\begin{array}{ll}\text { distribution? } & {}\end{array}$
Options:
\hline Class Interval & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\
\hline Frequency & 5 & 10 & 20 & 5 & 10 \\
\hline
\end{array}
What is the median of the above frequency $\begin{array}{ll}\text { distribution? } & {}\end{array}$
Solution:
1247 Upvotes
Verified Answer
The correct answer is:
25
\begin{array}{|c|c|c|c|c|}
\hline Class Interval & \mathbf{f} & \mathbf{e f} & \mathbf{x} & \mathbf{f x} \\
\hline 0-10 & 5 & 5 & 5 & 25 \\
\hline 10-20 & 10 & 15 & 15 & 150 \\
\hline 20-30 & 20 & 35 & 25 & 500 \\
\hline 30-40 & 5 & 40 & 35 & 175 \\
\hline 40-50 & 10 & 50 & 45 & 450 \\
\hline Total & 50 & 145 & 125 & 1300 \\
\hline
\end{array} $\frac{N}{2}=\frac{50}{2}=25$
Median group is 20-30. $\Rightarrow$ Median $=20+\frac{25-15}{20} \times 10=20+5=25$
\hline Class Interval & \mathbf{f} & \mathbf{e f} & \mathbf{x} & \mathbf{f x} \\
\hline 0-10 & 5 & 5 & 5 & 25 \\
\hline 10-20 & 10 & 15 & 15 & 150 \\
\hline 20-30 & 20 & 35 & 25 & 500 \\
\hline 30-40 & 5 & 40 & 35 & 175 \\
\hline 40-50 & 10 & 50 & 45 & 450 \\
\hline Total & 50 & 145 & 125 & 1300 \\
\hline
\end{array} $\frac{N}{2}=\frac{50}{2}=25$
Median group is 20-30. $\Rightarrow$ Median $=20+\frac{25-15}{20} \times 10=20+5=25$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.