Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium \(2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Br}_2(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})\)
for which \(K_c=32\) at \(500 \mathrm{~K}\). If initially pure \(\mathrm{BrCl}\) is present at a concentration of \(3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}\), what is its molar concentration in the mixture at equilibrium ?
ChemistryEquilibrium
Solution:
1297 Upvotes Verified Answer


\(\mathrm{K}_{\mathrm{c}}=\frac{(\mathrm{x} / 2)(x / 2)}{\left(3.30 \times 10^{-3}-x\right)^2}=32\) (Given)
\(\therefore \frac{x / 2}{\left(3.30 \times 10^{-3}-x\right)}=\sqrt{32}\)
or \(x / 2=5.66 \times\left(3.30 \times 10^{-3}-x\right)\)
\(x=11.32\left(3.30 \times 10^{-3}-x\right)\)
or \(12.32 x=11.32\left(3.30 \times 10^{-3}\right)\) or \(x=3.03 \times 10^{-3}\)
at eqn. \([\mathrm{BrCl}]=\left(3.30 \times 10^{-3}-3.0 \times 10^{-3}\right)\)
\(=0.30 \times 10^{-3}=3.03 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.