Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
By using the properties of definite integrals, evaluate the integrals
$\int_{-5}^5|x+2| d x=I(s a y)$
MathematicsIntegrals
Solution:
1987 Upvotes Verified Answer
$\mathrm{I}=\int_{-5}^{-2}|\mathrm{x}+2| \mathrm{dx}\left|+\int_{-2}^5\right| \mathrm{x}+2 \mid \mathrm{dx}$
at $\mathrm{x}=-5, \mathrm{x}+2 < 0$; at $\mathrm{x}=-2, \mathrm{x}+2=0$; at $\mathrm{x}=5$, $x+2>0 ; x+2 < 0, \quad x+2=0, \quad x+2>0$
$I=-\int_{-5}^{-2} x+2 d x+\int_{-2}^5 x+2 d x$
$=-\left[\frac{x^2}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^2}{2}+2 x\right]_{-2}^5=29$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.