Search any question & find its solution
Question:
Answered & Verified by Expert
$\mathrm{C}_{60}$ emerging from a source at a speed (v) has a de Broglie wavelength of $11.0 Å$. The value of $\mathrm{v}\left(\mathrm{inm} \mathrm{s}^{-1}\right.$ ) is closest to
[Planck's constant $\left.h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right]$
Options:
[Planck's constant $\left.h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right]$
Solution:
2010 Upvotes
Verified Answer
The correct answer is:
$0.5$
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}} \Rightarrow \mathrm{v}=\frac{\mathrm{h}}{\mathrm{m} \cdot \lambda}=\frac{6.62 \times 10^{-34}}{720 \times 10^{-3} \times 11 \times 10^{-10}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.