Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} \mathrm{dx}$ equals
MathematicsIndefinite IntegrationBITSATBITSAT 2021
Options:
  • A $-\cot \left(e x^{x}\right)+\mathrm{C}$
  • B $\tan \left(x e^{x}\right)+\mathrm{C}$
  • C $\tan \left(e^{x}\right)+\mathrm{C}$
  • D $\cot \left(e^{x}\right)+\mathrm{C}$
Solution:
2919 Upvotes Verified Answer
The correct answer is: $\tan \left(x e^{x}\right)+\mathrm{C}$
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} \mathrm{dx}$

Let $x e^{x}=t$

$\Rightarrow\left(x e^{x}+e^{x}\right)=\frac{\mathrm{dt}}{\mathrm{dx}}$

$\Rightarrow d x=\frac{\mathrm{dt}}{e^{x}(x+1)}$

$\therefore \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} \mathrm{dx}=\int \frac{e^{x}(1+x)}{\cos ^{2} t} \times \frac{d t}{e^{x}(1+x)}=\int \frac{1}{\cos ^{2} t} \mathrm{dt}=\int \sec ^{2} t \mathrm{dt}=$$\tan t+\mathrm{C}=\tan \left(x e^{x}\right)+\mathrm{C}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.