Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\sec x d x}{\sqrt{\cos 2 x}}=$
MathematicsIndefinite IntegrationJEE Main
Options:
  • A $\sin ^{-1}(\tan x)$
  • B $\tan x$
  • C $\cos ^{-1}(\tan x)$
  • D $\frac{\sin x}{\sqrt{\cos x}}$
Solution:
2727 Upvotes Verified Answer
The correct answer is: $\sin ^{-1}(\tan x)$
$\begin{aligned}
& \int \frac{\sec x d x}{\sqrt{\cos 2 x}}=\int \frac{\sec x}{\sqrt{\cos ^2 x-\sin ^2 x}} d x \\
& \left.=\int \frac{\sec ^2 x d x}{\sqrt{1-\tan ^2 x}} \text { \{Multiplying } N^{\prime} r \text { and } D^{\prime} r \text { by } \sec x\right\}
\end{aligned}$
Now putting $\tan x=t \Rightarrow \sec ^2 x d x=d t$, we get the integral $=\sin ^{-1} t=\sin ^{-1}(\tan x)$.
Trick : Since $\frac{d}{d x}\left\{\sin ^{-1}(\tan x)\right\}=\frac{\sec ^2 x}{\sqrt{1-\tan ^2 x}}$
$=\frac{\sec ^2 x \cdot \cos x}{\sqrt{\cos ^2 x-\sin ^2 x}}=\frac{\sec x}{\sqrt{\cos 2 x}} .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.