Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{\cos x-\sin x}$ is equal to
MathematicsIndefinite IntegrationJEE MainJEE Main 2004
Options:
  • A
    $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+C$
  • B
    $\frac{1}{\sqrt{2}} \log \left|\cot \left(\frac{x}{2}\right)\right|+C$
  • C
    $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{3 \pi}{8}\right)\right|+C$
  • D
    $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}+\frac{3 \pi}{8}\right)\right|+C$
Solution:
1850 Upvotes Verified Answer
The correct answer is:
$\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}+\frac{3 \pi}{8}\right)\right|+C$
$\int \frac{d x}{\cos x-\sin x}=\frac{1}{\sqrt{2}} \int \frac{1}{\cos \left(x+\frac{\pi}{4}\right)} d x=\frac{1}{\sqrt{2}} \int \sec \left(x+\frac{\pi}{4}\right) d x=\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}+\frac{3 \pi}{8}\right)\right|+C$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.