Search any question & find its solution
Question:
Answered & Verified by Expert
Calculate the mean deviation about the mean of the set of first $n$ natural numbers when $n$ is an odd number.
Solution:
2586 Upvotes
Verified Answer
Let $\mathrm{n}=2 \mathrm{k}+1($ odd $) \Rightarrow \mathrm{k}=\frac{(\mathrm{n}-1)}{2}$
$$
\bar{x}=\frac{1+2+3+\ldots+n}{n}=\frac{n(n+1)}{2 n}
$$
$$
=\frac{\mathrm{n}+1}{2}=\frac{2 \mathrm{k}+1+1}{2}=(\mathrm{k}+1)
$$

$$
\begin{aligned}
&\therefore \quad \Sigma|\mathrm{x}-\overline{\mathrm{x}}|=2(1+2+3+\ldots .+\mathrm{k}) \\
&=2\left\{\frac{\mathrm{k}(\mathrm{k}+1)}{2}\right\}=2\left\{\frac{\left(\frac{\mathrm{n}-1}{2}\right)\left(\frac{\mathrm{n}-1}{2}+1\right)}{2}\right\}
\end{aligned}
$$
$$
=\left(\frac{\mathrm{n}-1}{2}\right)\left(\frac{\mathrm{n}+1}{2}\right)=\frac{\mathrm{n}^2-1}{4}
$$
$\therefore \quad$ Required mean deviation
$$
=\frac{1}{n} \Sigma|x-\bar{x}|=\frac{n^2-1}{4 n}
$$
$$
\bar{x}=\frac{1+2+3+\ldots+n}{n}=\frac{n(n+1)}{2 n}
$$
$$
=\frac{\mathrm{n}+1}{2}=\frac{2 \mathrm{k}+1+1}{2}=(\mathrm{k}+1)
$$

$$
\begin{aligned}
&\therefore \quad \Sigma|\mathrm{x}-\overline{\mathrm{x}}|=2(1+2+3+\ldots .+\mathrm{k}) \\
&=2\left\{\frac{\mathrm{k}(\mathrm{k}+1)}{2}\right\}=2\left\{\frac{\left(\frac{\mathrm{n}-1}{2}\right)\left(\frac{\mathrm{n}-1}{2}+1\right)}{2}\right\}
\end{aligned}
$$
$$
=\left(\frac{\mathrm{n}-1}{2}\right)\left(\frac{\mathrm{n}+1}{2}\right)=\frac{\mathrm{n}^2-1}{4}
$$
$\therefore \quad$ Required mean deviation
$$
=\frac{1}{n} \Sigma|x-\bar{x}|=\frac{n^2-1}{4 n}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.