Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Calculate the standard cell potentials of galvanic cell in which the following reactions take place
(i) \(2 \mathrm{Cr}(s)+3 \mathrm{Cd}^{2+}(a q) \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{Cd}(s)\)
(ii) \(\mathrm{Fe}^{2+}(a q)+\mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{Ag}(s)\)
\(\mathrm{E}_{\mathrm{Cd}^{2+}, \mathrm{Cd}}^{\circ}=-0.40 \mathrm{~V}\),
\(\mathrm{E}_{\mathrm{Ag}^{+}, \mathrm{Ag}}^{\circ}=\mathbf{0 . 8 0 \mathrm { V } ,} \mathrm{E}_{\mathrm{Fe}^{3+}}^{\circ}, \mathrm{Fe}^{2+}=0.77 \mathrm{~V}\).
Calculate the \(\Delta_r G^{\circ}\) and equilibrium constant of the reactions.
ChemistryElectrochemistry
Solution:
2150 Upvotes Verified Answer
(i) \(\quad \mathrm{E}_{\text {cell }}^0=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{\circ}\)
\(\begin{aligned}
&=-0.40 \mathrm{~V}-(-0.74 \mathrm{~V})=+0.34 \mathrm{~V} \\
&\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-\mathrm{nFE}_{\text {cell }}^{\circ} \\
&=-6 \times 96500 \mathrm{C} \mathrm{mol}^{-1} \times 0.34 \mathrm{~V} \\
&=-196860 \mathrm{C} \mathrm{V} \mathrm{mol}^{-1} \\
&=-196860 \mathrm{~J} \mathrm{~mol}^{-1}=-196.86 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} \\
&-\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=2.303 \mathrm{RT} \operatorname{log~K} \\
&196860=2.303 \times 8.314 \times 298 \operatorname{log~K} \\
&\text { or } \quad \log \mathrm{K}=34.5014 \\
&\mathrm{~K}=\text { Antilog } 34.5014=3.172 \times 10^{34}
\end{aligned}\)
(ii) \(\mathrm{E}_{\text {cell }}^0=+0.80 \mathrm{~V}-0.77 \mathrm{~V}=+0.03 \mathrm{~V}\)
\(\begin{aligned}
&\Delta_r G^{\circ}=-\mathrm{nFE}_{\text {cell }}^{\circ} \\
&=-1 \times\left(96500 \mathrm{C} \mathrm{mol}^{-1}\right) \times(0.03 \mathrm{~V}) \\
&=-2895 \mathrm{C} \mathrm{V} \mathrm{mol}^{-1}=-2895 \mathrm{~J} \mathrm{~mol}^{-1} \\
&=-2.895 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
&\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \operatorname{log~K} \\
&-2895=-2.303 \times 8.314 \times 298 \times \operatorname{log~K} \\
&\text { or } \operatorname{log~K}=0.5074 \\
&\text { or } \mathrm{K}=\text { Antilog }(0.5074)=3.22 .
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.