Search any question & find its solution
Question:
Answered & Verified by Expert
Calculate the volume of unit cell if an element having molar mass $180 \mathrm{~g} \mathrm{~mol}^{-1}$ forms fcc unit cell. $\left[\rho \cdot \mathrm{N}_{\mathrm{A}}=120 \times 10^{21} \mathrm{~g} \mathrm{~cm}^{-3} \mathrm{~mol}^{-1}\right]$
Options:
Solution:
1882 Upvotes
Verified Answer
The correct answer is:
$6.00 \times 10^{-21} \mathrm{~cm}^3$
Volume of unit cell $=\mathrm{a}^3=$ ?
Density $(\rho)=\frac{M \times n}{a^3 \times N_A}$
$\mathrm{a}^3=\frac{\mathrm{M} \times \mathrm{n}}{\rho \times \mathrm{N}_{\mathrm{A}}}=\frac{180 \times 4}{120 \times 10^{21}}=6.00 \times 10^{-21} \mathrm{~cm}^3$
Density $(\rho)=\frac{M \times n}{a^3 \times N_A}$
$\mathrm{a}^3=\frac{\mathrm{M} \times \mathrm{n}}{\rho \times \mathrm{N}_{\mathrm{A}}}=\frac{180 \times 4}{120 \times 10^{21}}=6.00 \times 10^{-21} \mathrm{~cm}^3$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.