Search any question & find its solution
Question:
Answered & Verified by Expert
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
Solution:
2728 Upvotes
Verified Answer
For Balmer series, \(\mathrm{n}_1=2\).
Hence, \(\bar{v}=R\left(\frac{1}{2^2}-\frac{1}{n_2^2}\right)\) \(\bar{v}=\frac{1}{\lambda}\), For \(\lambda\) to be longest (maximum) \(\bar{v}\) should be minimum. This can be so when \(\mathrm{n}_2\) is minimum, i.e., \(\mathrm{n}_2=3\). Hence,
\(\bar{v}=\left(1.097 \times 10^7 \mathrm{~m}^{-1}\right)\left(\frac{1}{2^2}-\frac{1}{3^2}\right)\)
\(=1.097 \times 10^7 \times \frac{5}{36} \mathrm{~m}^{-1}=1.523 \times 10^6 \mathrm{~m}^{-1}\)
Hence, \(\bar{v}=R\left(\frac{1}{2^2}-\frac{1}{n_2^2}\right)\) \(\bar{v}=\frac{1}{\lambda}\), For \(\lambda\) to be longest (maximum) \(\bar{v}\) should be minimum. This can be so when \(\mathrm{n}_2\) is minimum, i.e., \(\mathrm{n}_2=3\). Hence,
\(\bar{v}=\left(1.097 \times 10^7 \mathrm{~m}^{-1}\right)\left(\frac{1}{2^2}-\frac{1}{3^2}\right)\)
\(=1.097 \times 10^7 \times \frac{5}{36} \mathrm{~m}^{-1}=1.523 \times 10^6 \mathrm{~m}^{-1}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.