Search any question & find its solution
Question:
Answered & Verified by Expert
Charges of $+\frac{10}{3} \times 10^{-9} \mathrm{C}$ are placed at each of the four corners of a square of side $8 \mathrm{~cm}$. The potential at the intersection of the diagonals is
Options:
Solution:
1850 Upvotes
Verified Answer
The correct answer is:
$1500 \sqrt{2}$ volt
Potential at the centre 0 , $V=4 \times \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q}{a / \sqrt{2}}$
Where $Q=\frac{10}{3} \times 10^{-9} \mathrm{C}$ and $a=8 \mathrm{~cm}=8 \times 10^{-2} \mathrm{~m}$

So $V=5 \times 9 \times 10^9 \times \frac{\frac{10}{3} \times 10^{-9}}{\frac{8 \times 10^{-2}}{\sqrt{2}}}=1500 \sqrt{2}$ volt
Where $Q=\frac{10}{3} \times 10^{-9} \mathrm{C}$ and $a=8 \mathrm{~cm}=8 \times 10^{-2} \mathrm{~m}$

So $V=5 \times 9 \times 10^9 \times \frac{\frac{10}{3} \times 10^{-9}}{\frac{8 \times 10^{-2}}{\sqrt{2}}}=1500 \sqrt{2}$ volt
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.