Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Choose the correct answer
$\int \frac{d x}{e^x+e^{-x}}$ is equal to
(a) $\tan ^{-1}\left(e^x\right)+c$
(b) $\tan ^{-1}\left(e^{-x}\right)+c$
(c) $\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)+\mathrm{c}$
(d) $\log \left(\mathrm{e}^x+\mathrm{e}^{-x}\right)+c$
MathematicsIntegrals
Solution:
1106 Upvotes Verified Answer
(a) Let $\mathrm{I}=\int \frac{d x}{e^x+e^{-x}}=\int \frac{e^x d x}{e^{2 x}+1}$;
Put $\mathrm{e}^{\mathrm{x}}=\mathrm{t}, \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$\therefore \mathrm{I}=\int \frac{\mathrm{dt}}{\mathrm{t}^2+1}=\tan ^{-1} \mathrm{t}+\mathrm{c}=\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{c} .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.