Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Circles $C_{1}$ and $C_{2}$, of radii $r$ and $R$ respectively, touch each other as shown in figure. The line $\ell$, which is parallel to the line joining the centres of $C_{1}$ and $C_{2}$, is tangent to $\mathrm{C}_{1}$ at $\mathrm{P}$ and intersects $\mathrm{C}_{2}$ at $\mathrm{A}, \mathrm{B}$. If $\mathrm{R}^{2}=2 \mathrm{r}^{2}$, then $\angle A O B$
MathematicsCircleKVPYKVPY 2015 (SB/SX)
Options:
  • A $\mathrm22 \frac{1^{0}}{2}$
  • B $45^{\circ}$
  • C $\mathrm60^{\circ}$
  • D $67 \frac{1^{0}}{2}$
Solution:
2062 Upvotes Verified Answer
The correct answer is: $45^{\circ}$


$\mathrm{C}_{1}(\mathrm{r}, 0)$ $\mathrm{C}_{2}(\mathrm{R}, 0)$ $\mathrm{Eq} .$ of $\mathrm{AB} \quad \mathrm{y}=\mathrm{r}$
Eq. of circle $\quad C_{2} \quad(x-R)^{2}+y^{2}=R^{2}$
$\mathrm{A}\left(\mathrm{R}-\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}, \mathrm{r}\right)$ using $\mathrm{R}^{2}=2 \mathrm{r}^{2}$
$\mathrm{B}\left(\mathrm{R}+\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}, \mathrm{r}\right) \quad \mathrm{A}(\mathrm{R}-\mathrm{r}, \mathrm{r}), \mathrm{B}(\mathrm{R}+\mathrm{r}, \mathrm{r})$
Slope of $\mathrm{OA}=\frac{\mathrm{r}}{\mathrm{R}-\mathrm{r}}=\mathrm{m}_{1}$
Slope of $\mathrm{OB}=\frac{\mathrm{r}}{\mathrm{R}+\mathrm{r}}=\mathrm{m}_{2}$
$$
\begin{array}{l}
\tan \theta=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}=1 \\
\theta=45^{\circ}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.